1. Germain aimerait avoir 11 000$ dans cinq ans pour s’acheter une voiture. Quel montant d’argent doit-il investir aujourd’hui si la caisse lui offre un taux d’intérêt annuel de 4,5% capitalisé mensuellement?

\[M = 11000 \]
\[C = ? \]
\[i = 4.5\% / 12 \]
\[n = 5 \times 12 \]
\[C = 8787.38\$ \]

2. Maxime s’est acheté un ordinateur 2 ans passés. À chaque année, il perd 40% de sa valeur. Sachant que l’ordinateur de Maxime vaut maintenant 567$, détermine quelle était sa valeur deux ans plus tôt, au moment où il a fait l’achat.

\[M = 567 \]
\[n = 2 \times a \]
\[i = -40\% \]
\[C = 1575\$ \]

3. Yaime Sauvé fait un placement de 2000$ qui est rendu à 2155$ deux ans plus tard. Quel taux calculé trimestriellement la banque lui a-t-il fait?

\[M = 2000 \]
\[C = 2155 \]
\[i = x / 4 \]
\[n = 2 \times 4 \]
\[x = 3.7496\% \]

4. Hélène aime les autos de type sport. Son budget mensuel lui permet de se procurer une voiture de 450$ par mois. Le concessionnaire lui offre un taux d’intérêt de 6% annuel pour une période de 5 ans. Elle voudrait se procurer 2011 Honda Civic au prix de 21 799.00$ plus taxes. Peut-elle se procurer cette voiture? Est-elle en-dessous de son budget ou au-dessus et de combien?

\[\text{Montant total} = 21799 \times 1,15 = 25068,85\$ \]
\[\text{Paiements} = \frac{19,33}{1000} \times 25068,85 = 484,58\$ \]

Non, car ses paiements seraient de 34,58$ au-dessus de son budget.
5. Christophe et Alice ont fait l’acquisition d’une maison de 165 900$ à Dieppe. À l’achat, ils ont versé un acompte de 5%. Ils ont payé le solde en prenant une hypothèque amorti sur 25 ans à un taux d’intérêt fixe de 6%.

<table>
<thead>
<tr>
<th>Taxe foncière par centième</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieppe : 1,5645</td>
</tr>
</tbody>
</table>

a) Si Christophe et Alice conservent ce même taux pour toute la durée de leur prêt, quelle somme verseront-ils en intérêts au cours de ces 25 ans?

Hypothèque = 165900 – 165900 × 5% = 165900 – 8285 = 157605$

paiements = \frac{6,44}{1000} \times 157605 = 1014,98$

Intérêts = 1014,98 × 12 × 25 – 157605 = 304492,86 – 157605 = 146887,86$

b) La valeur imposable de la maison est 185 000 $. Quel est le coût de logement mensuel?

\frac{1,5645}{100} \times 185000 = 2894,33$ / an

Taxes par mois = 2894,33 ÷ 12 = 241,19$

Coût total = 1014,98 + 241,19 = 1256,17$

6. Mireille a un prêt personnel de 1000,00 $ amorti sur 3 ans. Quel est taux d’intérêt de son prêt en pourcentage si ses versements mensuels sont de 30,88 $?

Pour un amortissement de 3 ans

7% donne un paiement de 30,88 / 1000.

7. Joséphine a emprunté 1 395 $ à la banque pour acheter un ordinateur. Pour la durée du prêt, elle a obtenu un taux d’intérêt de 4,25 % capitalisé mensuellement.

a) Quel sera le montant du paiement mensuel si son prêt est amorti sur une période de 3 ans?

paiement = \frac{29,64}{1000} \times 1395 = 41,35$ / mois

b) Combien d’intérêts aura-t-elle payé au total?

\frac{41,35}{mois} \times 12mois / a \times 3a = 1488,52$

1488,52 – 1395 = 93,52$ intérêts

8. Alexandre a fait un prêt de 2000 $ afin de s’acheter un système pour sa voiture. Le taux d’intérêt annuel est de 3,00 % et il fait des paiements de 58,16 $ par mois. Complète le tableau afin de déterminer le solde de fermeture à la fin du 3e mois.

\begin{align*}
i &= \frac{3\%}{12mois} = 0,0025 \\
\text{intérêts} &= 2000\$ \times 0,0025 = 5$
\end{align*}

<table>
<thead>
<tr>
<th>Mois</th>
<th>Solde d’ouverture</th>
<th>Intérêts</th>
<th>Versements</th>
<th>Solde de fermeture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
<td>5</td>
<td>58,16</td>
<td>1946,84</td>
</tr>
<tr>
<td>2</td>
<td>1946,84</td>
<td>4,87</td>
<td>58,16</td>
<td>1893,55</td>
</tr>
<tr>
<td>3</td>
<td>1893,55</td>
<td>4,73</td>
<td>58,16</td>
<td>1840,12</td>
</tr>
</tbody>
</table>

9. Si tu as une hypothèque de 100 000 $, amortie sur 25 ans, et que tes versements mensuels sont de 675 $, quel est le taux d’intérêt?

\begin{align*}
x \times 100000 = 675 \\
\frac{1000}{6,75} = 6,75$
\end{align*}

donc dans la colonne de 25 ans, le 6,75 est en ligne de 6,5%

10. De combien tes versements mensuels augmenteraient-ils si ton hypothèque de 100 000 $ était amortie sur 20 ans plutôt que 25 ans?

\begin{align*}
\frac{7,31}{1000} \times 100000 = 731$ \\
\frac{6,60}{1000} \times 100000 = 660$
\end{align*}

Ils augmenteraient de 71$ pour le taux d’intérêt de 6,25%.
11. Nathalie et Charles désirent s’acheter un condo au coût de 350 000$. Ils donnent un versement initial de 30% de ce montant. La caisse leur propose un taux de 5.75% amortie sur 20 ans. Combien auront-ils payé pour leur maison si le taux reste inchangé pendant la durée totale du prêt?

Versement initial = $350 000 \times 30% = 105 000$

Hypothèque = $350 000 - 105 000 = 245 000$

Versement = $245 000 \times \frac{7.02}{1000} = 1719.90$

Total = $1719.90 \times 12 \times 20 + 105 000 = 517 776$

12. La banque vient de consentir à Martine un prêt de 18 000$ pour faire l’acquisition d’une nouvelle voiture. Elle s’est fait un tableau d’amortissement pour pouvoir suivre l’évolution du prêt qu’elle aura à rembourser mensuellement sur les 4 prochaines années. Le tableau ci-dessous donne les détails du premier mois de remboursement.

<table>
<thead>
<tr>
<th>mois</th>
<th>solde d’ouverture</th>
<th>intérêt</th>
<th>versement</th>
<th>solde de fermeture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18 000,00 $</td>
<td>75,00 $</td>
<td>414,54 $</td>
<td>17 660,46 $</td>
</tr>
<tr>
<td>2</td>
<td>17 660,46 $</td>
<td>73,59 $</td>
<td>414,54 $</td>
<td>17 319,51 $</td>
</tr>
</tbody>
</table>

Quel est le taux d’intérêt annuel proposé par la banque? Montre ton travail

$18000 \times x = 75$

$x = 0,004166667$

<table>
<thead>
<tr>
<th>mois</th>
<th>solde d’ouverture</th>
<th>intérêt</th>
<th>versement</th>
<th>solde de fermeture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18 000</td>
<td>75</td>
<td>414,54</td>
<td>17 660,46</td>
</tr>
<tr>
<td>2</td>
<td>17 660,46</td>
<td>73,59</td>
<td>414,54</td>
<td>17 319,51</td>
</tr>
</tbody>
</table>

Bloc 1 – Algèbre
Clinique : Bloc 1 - quadratique

1. Complétez le tableau suivant :

<table>
<thead>
<tr>
<th>Forme générale</th>
<th>Forme canonique</th>
<th>Forme factorisée</th>
</tr>
</thead>
</table>
a) $f(x) = 3x^2 + 18x + 24$ | $f(x) = 3x^2 + 18x + 24$ | $f(x) = 3x^2 + 18x + 24$
| | $= 3 \left(\frac{x^2 + 6x + 9}{9} \right) - 9 + 8$ | $= 3 \left(\frac{x^2 + 6x + 8}{9} \right)$ |
| | $= 3 \left(x + 3 \right)^2 - 1$ | $= 3 \left(x + 4 \right) \left(x + 2 \right)$ |
| b) $g(x) = -4 \left(x^2 + 6x + 9\right) + 40$ | $g(x) = -4 \left(x + 3\right)^2 + 40$ | $g(x) = -4 \left(x^2 + 6x + 9\right)$ |
| | $= -4x^2 - 24x + 36 + 40$ | $= -4x^2 - 24x + 4$ |
| | $= -4x^2 - 24x + 4$ | $= -4 \left(x^2 + 6x + 1\right)$ |
| c) $h(x) = 0,25 \left(x^2 - 5x - 5\right)$ | $h(x) = 0,25 \left(x^2 - 4x + 4\right) - 4 - 5$ | $h(x) = 0,25 \left(x - 5\right) \left(x + 1\right)$ |
| | $= 0,25x^2 - x - 1,25$ | $= 0,25 \left(x - 2\right)^2 - 9$ |
| | $= 0,25 \left(x - 2\right)^2 - 2,25$ | $= 0,25 \left(x - 2\right)^2 - 2,25$ |
d) \(l(x) = \frac{2}{3}(x^2 - 12x + 36) + 30 \)
\[= \frac{2}{3}x^2 - 8x + 24 + 30 \]
\[= \frac{2}{3}x^2 - 8x + 54 \]
\(l(x) = \frac{2}{3}(x - 6)^2 + 30 \)
\(\text{Ne s'applique pas} \)

\(f(x) = -10(x + 0,5)(x - 7) \)
\[= -10(x^2 - 7x + 0,5x - 3,5) \]
\[= -10x^2 + 65x + 35 \]
\(f(x) = -10(x + 0,5)(x - 7) \)
\[= -10x^2 + 65x + 35 \]
\(\text{Ne s'applique pas} \)

\(k(x) = -2x^2 - 8x - 15 \)
\[\text{Ne s'applique pas} \]

2. Détermine l'inéquation associée à chacun des graphiques suivants.

b)
\[S(3,7) P(5,3) \]
\[y = a(x - h)^2 + k \]
\[3 = a(3 - 3)^2 + 7 \]
\[-4 = a(4) \]
\[a = -1 \]
\[y \geq -(x - 3)^2 + 7 \]

\[S(-4,1) P(-2,3) \]
\[y = a(x - h)^2 + k \]
\[3 = a(-2 + 4)^2 + 1 \]
\[2 = a(4) \]
\[a = \frac{2}{4} = \frac{1}{2} \]
\[y > \frac{1}{2}(x + 4)^2 + 1 \]

3. Une automobiliste effectue une manœuvre qui l’oblige à modifier la vitesse de sa voiture. Le graphique ci-dessous représente la vitesse de la voiture en fonction du temps.

a) Établie la règle de la fonction polynomiale de degré 2 qui représente cette situation.
\[S(7,30) P(14,25) \]
\[y = a(x - h)^2 + k \]
\[25 = a(14 - 7)^2 + 30 \]
\[-5 = a(49) \]
\[a = \frac{-5}{49} \]
\[y = \frac{-5}{49}(x - 7)^2 + 30 \]

b) Combien de temps s’est écoulé durant cette manœuvre? 24 secondes

c) Durant cette manœuvre, pendant combien de temps la vitesse de la voiture est-elle supérieure à 28 m/s? Pendant 9 secondes.
4. Factorise les fonctions suivantes :
 a) \(20x^2 - x - 12 \)
 \[
 = \frac{20x - 16}{4(5x - 4)} \cdot \frac{20}{5(4x + 3)}
 = \frac{5x - 4}{4x + 3}
 \]
 b) \(x^2 - 8x + 14 \)
 \[
 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
 = \frac{8 \pm \sqrt{64 - 4(1)(14)}}{2(1)}
 = \frac{8 \pm 4 \sqrt{2}}{2}
 = 4 \pm \sqrt{2}
 \]

5. Soit un prisme de 2m de hauteur sur \((2x - 10)\)m de profondeur et \((x + 1)\) m de largeur. Si le volume de ce prisme est de 20 m³, quelle est la valeur de \(x\)?
 \[
 V = Llh
 20 = (2x - 10)(x + 1)2
 10 = 2x^2 + 2x - 10x - 10
 0 = 2x^2 - 8x - 20
 0 = 2(x^2 - 4x - 10)
 \]
 \[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
 x = \frac{-4 \pm \sqrt{16 - 4(1)(-10)}}{2}
 x = \frac{-4 \pm \sqrt{56}}{2}
 x = \frac{-4 \pm 7.5}{2}
 \]
 Valor à rejeter

6. Combien existe-t-il de triangles isocèles rectangles dont l’hypoténuse mesure 4 unités de moins que le triple de la mesure d’une de leurs cathètes?
 \[
 (3x - 4)^2 = x^2 + x^2
 9x^2 - 24x + 16 = 2x^2
 7x^2 - 24x + 16 = 0
 \]
 \[
 x = \frac{24 \pm \sqrt{24^2 - 4(7)(16)}}{14}
 x = \frac{24 \pm 14}{14}
 x = \frac{24 \pm 11,3}{14}
 x = \frac{24 + 11,3}{14}
 x = 2,52
 \]
 Les côtés sont 2,52u et l’hypoténuse est de 3,56u.

7. Détermine les coordonnées du sommet de la courbe associée à chacune des fonctions suivantes.
 a) \(F(x) = 3(x - 7)^2 + 3 \)
 \[
 g(x) = 4 \left[\left(x^2 - x + \frac{1}{4} \right) - \frac{1}{4} + \frac{5}{2} \right]
 = 4 \left(x - \frac{1}{2} \right)^2 + \frac{9}{4}
 \]
 \[
 S(7,3)
 \]
 b) \(g(x) = 4x^2 - 4x + 10 \)
 \[
 g(x) = \left[\left(x - \frac{1}{2} \right)^2 + q \right]
 = 4 \left(x - \frac{1}{2} \right)^2 + q
 \]
 \[
 S \left(\frac{1}{2},q \right)
 \]
8. Détermine la règle de la fonction associée à chacune des situations ci-dessous.

a) Une parabole dont les coordonnées du sommet sont (5, 3) et qui passe par le point (1, 19).

\[y = a(x - h)^2 + k \]
\[S(5, 3) \quad P(1, 19) \]
\[19 = a(1 - 5)^2 + 3 \]
\[a = 1 \]

b) Une parabole dont les racines sont 3 et -1 et qui passe par la coordonnée (2, 6).

\[y = a(x - r_1)(x - r_2) \quad y = a(x - 3)(x - (-1)) \]
\[6 = a(2 - 3)(2 - 1) \]
\[a = -2 \]
\[y = -2(x^2 + x - 3x - 3) \]

a) Etablissez la règle de la fonction associée à cette situation. OOPS

b) À quel moment la valeur du club est-elle à son maximum?

c) Pendant combien de temps est-elle supérieure à 100M$?

10. Camille a trois ans de moins que le double de l’âge de son frère André. De plus, si on effectue le produit de leur âge, on obtient 20.

Déterminez l’âge de Camille et celui d’André.

\[x : \text{âge de Camille} \]
\[y : \text{âge d’André} \]
\[x = 2y - 3 \]
\[xy = 20 \]
\[\frac{(2y - 3)y = 20}{2y^2 - 3y - 20 = 0} \]
\[\frac{(2y - 8)(2y + 5)}{2} = 0 \]
\[(y - 4)(2y + 5) = 0 \]
\[y = 4 \text{ ou } y = -\frac{5}{2} \text{ à rejeter} \]

Camille a 4 ans et André a 5 ans.

11. Déterminez l’aire des deux figures ci-contre sachant qu’elles sont équivalentes.

\[\text{Rectangle} = \text{Triangle} \]
\[(4x - 2)(x + 2) = \frac{(x + 4)(2x + 4)}{2} \]
\[2 \left(4x^2 + 8x - 2x - 4\right) = 2x^2 + 4x + 8x + 16 \]
\[8x^2 + 12x - 8 = 2x^2 + 12x + 16 \]
\[6x^2 - 24 = 0 \]
\[6(x^2 - 4) = 0 \]
\[6(x - 2)(x + 2) = 0 \]
\[x = 2 \text{ ou } x = -2 \text{ à rejeter} \]

L’aire sera de 6 x 4 = 24u².
12. Définissez les variables x et y, et traduisez chacune des situations suivantes par un système d’équations.

a) La somme de deux nombres est 60 et le double de l’un des nombres diminué cinq fois de l’autre donne 48.

\[x : \text{est le 1er nombre} \quad x + y = 60 \]
\[y : \text{est le 2e nombre} \quad 2x - 5y = 48 \]

b) Une salle de spectacle accueille 2500 personnes. Il y a quatre fois plus de garçons que de filles dans la salle.

\[x : \text{est le nombre de garçons} \quad x + y = 2500 \]
\[y : \text{est le nombre de filles} \quad x = 4y \]

c) Au cinéma, Marc, Louise et leurs deux enfants doivent débourser 24$ pour les billets. David et ses trois enfants doivent débourser 21,59$.

\[x : \text{prix pour un adulte} \quad 2x + 2y = 24 \]
\[y : \text{prix pour un enfant} \quad x + 3y = 21.59 \]

13. Résolvez ces systèmes d’équations par la méthode de ton choix.

a) \[y = 3x - 2 \]
\[2x - 5y = 7 \]

\[2x - 5 (3x - 2) = 7 \]
\[2x - 15x + 10 = 7 \]
\[-13x = -3 \]
\[x = \frac{3}{13} \]

\[2 \left(\frac{3}{13} \right) - 5y = 7 \]
\[-5y = 7 - \frac{6}{13} \]
\[y = \frac{85}{13} \times -5 = \frac{-17}{13} \]
\[\left(\frac{3}{13}, \frac{-17}{13} \right) \]

b) \[12x + 4y + 4 = 0 \]
\[3x - 8y = -181 \]

\[(1) \quad 12x + 4y = -4 \]
\[(2) \quad 3x - 8y = -181 \]

\[(1) \times 2 \quad 24x + 8y = -8 \]
\[(2) \quad 3x - 8y = -181 \]

\[(1) + (2) \quad 27x = -189 \]
\[x = -7 \]

\[12 \times -7 + 4y = -4 \]
\[4y = -4 + 84 \]
\[4y = 80 \]
\[y = 20 \]
\[(-7, 20) \]
2x - y - 3z = 1
c) 3x + 2y - 2z = -4
 -x - 4y + 6z = 22

\[
\begin{align*}
(1) & \quad 2x - y - 3z = 1 \\
(2) & \quad 3x + 2y - 2z = -4 \\
(3) & \quad -x - 4y + 6z = 22 \\
(1) \times 2 & \quad 4x - 2y - 6z = 2 \\
(1) \times 4 & \quad 8x - 4y - 12z = 4 \\
(2) & \quad 3x + 2y - 2z = -4 \\
(1) + (2) & \quad 7x - 8z = -2 \\
(4) & \quad 7x - 8z = -2 \\
(5) & \quad 9x - 18z = -18 \\
(4) \times 9 & \quad 63x - 72z = -18 \\
(5) \times 7 & \quad 63x - 126z = -126 \\
(4) - (5) & \quad 54z = 108 \\
& \quad z = 2
\end{align*}
\]

\[\begin{align*}
(2, -3, 2)
\end{align*}\]

14. Dans une boutique de décoration, on peut acheter 6 bougies aromatisées et 5 bougies non aromatisées pour 10,15$. Pour 5,90$, on obtiendra 2 bougies non aromatisées et 4 bougies aromatisées. Sachant qu’il existe un seul type de bougies aromatisées et un seul type de bougies non aromatisées, quel est le prix de vente de chaque sorte de bougies?

\[
\begin{align*}
x : & \quad \text{prix des bougies aromatisées} \\
y : & \quad \text{prix des bougies non - aromatisées}
\end{align*}
\]

\[
\begin{align*}
(1) & \quad 6x + 5y = 10,15 \\
(2) & \quad 4x + 2y = 5,90 \\
(1) \times 2 & \quad 12x + 10y = 20,30 \\
(2) \times 3 & \quad 12x + 6y = 17,70 \\
(1) - (2) & \quad 4y = 2,60 \\
& \quad y = 0,65
\end{align*}
\]

Les bougies aromatisées sont de 1,15$ et les bougies non aromatisées sont de 0,65$.

15. Dans une école secondaire, il y a 175 élèves inscrits en 2e année du 2e cycle. Le double du nombre de garçons diminue de 35 représente le nombre de filles inscrites. Combien y a-t-il de garçons et combien de filles sont inscrits dans cette école?

\[
\begin{align*}
x : & \quad \text{est le nombre de garçons} \\
y : & \quad \text{est le nombre de filles}
\end{align*}
\]

\[
\begin{align*}
x + 2x - 35 & = 175 \\
3x & = 210 \\
x & = 70
\end{align*}
\]

\[
\begin{align*}
x + y & = 175 \\
70 + y & = 175 \\
y & = 105
\end{align*}
\]

Il y a 70 garçons et 105 filles.
16. La mesure de la diagonale d’un rectangle est de 15 cm. Le périmètre de ce rectangle est de 42 cm. Quels sont les dimensions de ce rectangle?

\[x : \text{représente la longueur du rectangle} \]
\[y : \text{représente la largeur du rectangle} \]

\[2x + 2y = 42 \rightarrow x + y = 21 \]
\[15^2 = x^2 + y^2 \]

\[15^2 = x^2 + (21-x)^2 \]
\[225 = x^2 + 441 - 42x + x^2 \]
\[0 = 2x^2 - 42x + 216 \]
\[0 = 2(x^2 - 21x + 108) \]
\[0 = 2(x - 12)(x - 9) \]
\[x = 12 \text{ ou } x = 9 \]

Si \(x = 12 \), la valeur de \(y \) sera 9 et si \(x = 9 \), la valeur de \(y \) sera 12. Alors les dimensions du rectangle sera de 9 cm par 12 cm.

17. Traduisez chacune des situations suivantes par une inéquation à deux variables. Identifiez ces deux variables :

a) En automobile, Luc roule au moins deux fois plus vite que son ami Patrick.

\[x : \text{la vitesse de Luc} \]
\[y : \text{la vitesse de Patrick} \]

\[x \geq 2y \]

b) Au hockey, les Canadiens et les Sénateurs ont comptés au plus dix buts.

\[x : \text{nombre de buts des Canadiens} \]
\[y : \text{nombre de buts des Sénateurs} \]

\[x + y \leq 10 \]

c) Le résultat de Patrick sur son test ne dépasse pas de plus de 5 points celui de Melissa.

\[x : \text{nombre de points de Patrick} \]
\[y : \text{nombre de points de Melissa} \]

\[x \leq y + 5 \]

18. Un constructeur de véhicules automobiles produit au plus 1000 automobiles hybrides de moins que d’automobiles à essence.

a) Identifiez les inconnues à l’aide de variables différentes.

\[x : \text{nombre d’automobiles hybrides} \]
\[y : \text{nombre d’automobiles à essence} \]

b) Détermine une inéquation associée à cette situation. \(y \leq x - 1000 \)

c) Représente graphiquement cette situation.
19. Pour couvrir le plancher d’une boutique, on utilise deux modèles de carreaux de céramique. L’un des deux modèles mesure 30,5 cm de côté et l’autre, 40,6 cm de côté. L’aire du plancher de cette boutique est au moins 715 000 cm2.

a) Identifiez les inconnues à l’aide de variables différentes.

\[x : \text{nombre de carreaux de 30,5cm} \]
\[y : \text{nombre de carreaux de 40,6cm} \]

b) Détermine une inéquation associée à cette situation.

\[30,5^2 x + 40,6^2 y \geq 715000 \]

c) Représente graphiquement cette situation.

20. Dans chacune des situations, représentez dans le plein cas d’inéquations.

a) \[y \geq 3x + 16 \]
 \[y > 3x - 10 \]

b) \[5x - y + 10 < 0 \]
 \[2x + y + 16 > 0 \]

a) \[b = 4 ; m = \frac{1}{4} \]
 \[y > \frac{1}{4}x + 4 \]

b) \[b = -6 ; m = 3 \]
 \[y \leq 3x - 6 \]

 \[(-4, -16) \text{ et } (12, -4) \]
 \[m = \frac{-4 + 16}{12 + 4} = \frac{12}{16} = \frac{3}{4} \]
 \[y = \frac{3}{4}x + b \]
 \[b = -\frac{3}{4}(12) + b \]
 \[-4 - 9 = b \]
 \[b = -13 \]
 \[y < \frac{3}{4}x - 13 \]
22. Déterminez algébriquement les coordonnées des sommets de chacun des polygones de contraintes.

\[A \]
- \(x = 4 \)
- \(4y - 12(4) + 40 = 0 \)
- \(4y = 8 \)
- \(y = 2 \)
- \(A(4, 2) \)

\[B \]
- \(x = 4 \)
- \(4 + y = 18 \)
- \(y = 14 \)
- \(B(4, 14) \)

\[C \]
- \(x + y = 18 \)
- \(16y = 176 \)
- \(y = 11 \)
- \(x = 9 \)
- \(C(9, 11) \)

\[B \]
- \(y = 4x + 2 \)
- \(y - 6x + 4 = 0 \)
- \(4x + 2 - 6x + 4 = 0 \)
- \(-2x = -6 \)
- \(x = 3 \)
- \(y = 4 \times 3 + 2 = 14 \)
- \(B(3, 14) \)

\[C \]
- \(y - 6x + 4 = 0 \)
- \(8y + 16x - 16 = 0 \)
- \(64x = 48 \)
- \(x = \frac{48}{64} = \frac{3}{4} \)
- \(y = 6 \left(\frac{3}{4} \right) + 4 = \frac{17}{2} \)
- \(C \left(\frac{3}{4}, \frac{17}{2} \right) \)
23. Une entreprise veut constituer un parc de véhicules composé de voitures et de camionnettes. On veut pouvoir disposer de 28 à 52 véhicules, dont au moins 20 voitures. Les employés utiliseront au maximum 3 fois plus de voitures que de camionnettes. Le prix d’achat d’une voiture est de 20000$ et celui d’une camionnette est de 35000$. Combien de voitures et de camionnettes cette entreprise doit-elle posséder afin de minimiser les prix d’achat?

\[
x : \text{nombre de voitures} \\
y : \text{nombre de camionnettes}
\]

\[
x + y \geq 28 \\
x + y \leq 52 \\
x \geq 20 \\
x \leq 3y \\
y \geq 0
\]

\[
z = 20000x + 35000y
\]

\[
A(20,8) \\
B(21,7) \\
C(39,13) \\
D(20,32)
\]

\[
\begin{align*}
x &= 3y \\
x + y &= 28 \\
3y + y &= 28 \\
4y &= 28 \\
y &= 7 \\
x + 7 &= 28 \\
x + 13 &= 52 \\
x &= 21 \\
x &= 39
\end{align*}
\]

\[
\begin{align*}
z &= 20000x + 35000y \\
A &= 680000$ \\
B &= 665000$ \\
C &= 1235000$ \\
D &= 1520000$
\end{align*}
\]

Il faudrait acheter 21 voitures et 7 camions.
24. Un chocolatier qui vend des chocolats dans des boîtes de 6 ou de 12 unités veut maximiser ses ventes. Les boîtes de 6 chocolats sont vendues 7$ et celles de 12 chocolats sont vendues 12$. Les statistiques de vent indiquent qu’il vend au moins 7 boîtes de 6 chocolats de plus que de boîtes de 12 chocolats par jour. Son équipement le contraint à produire un minimum de 96 chocolats et un maximum de 186 chocolats par jour. Il vend moins de 10 boîtes de 12 chocolats par jour. Combien de boîtes de chaque format devrait-il produire?

\[x \geq 7 + y \]
\[6x + 12y \geq 96 \]
\[6x + 12y \leq 186 \]
\[y \leq 10 \]
\[x \geq 0 \]
\[y \geq 0 \]

\[z = 7x + 12y \]

\(x \) : nombre de boîtes de 6 unités
\(y \) : nombre de boîtes de 12 unités

D\((16,0)\)
A\(\left(10, \frac{3}{2}\right)\)
B\(\left(15, \frac{5}{2}\right)\)
C\(\left(31, 0\right)\)

Il faudrait faire 31 boîtes de 6 et 0 boîte de 12.

Chapitre 2 – Systèmes d’inéquations

1. Inscris à côté de chaque énoncé s’il est vrai ou faux en te basant sur l’information fournie par le graphique.

Andréanne fabrique et vend des arrangements de fleurs séchées et des arrangements de fleurs de soie.

Le polygone de contraintes ci-dessous représente cette situation.

<table>
<thead>
<tr>
<th>Énoncé</th>
<th>Réponse</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Elle doit créer au moins 3 arrangements de fleurs séchées.</td>
<td>Vrai</td>
</tr>
<tr>
<td>ii. Le nombre total d’arrangements de fleurs est d’au moins 20.</td>
<td>Faux</td>
</tr>
<tr>
<td>iii. Si un arrangement de fleurs séchées donne un profit de 10$ et que celui de fleurs de soie dans 7$, elle devrait faire 12 arrangements de fleurs séchées et 8 de fleurs de soie pour maximiser ses profits.</td>
<td>Vrai</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courbe de l'équation</th>
<th>Coordonnées</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(3.5)</td>
<td>10$</td>
</tr>
<tr>
<td>(x)</td>
<td>(15.5)</td>
<td>20$</td>
</tr>
<tr>
<td>(7x + 10y)</td>
<td>(12.8)</td>
<td>15$</td>
</tr>
<tr>
<td>(7x + 10y)</td>
<td>(3.14)</td>
<td>12$</td>
</tr>
<tr>
<td>(7x + 10y)</td>
<td>(71, 195)</td>
<td>80$</td>
</tr>
<tr>
<td>(7x + 10y)</td>
<td>(21, 140)</td>
<td>140$</td>
</tr>
</tbody>
</table>

\[21 = 50 \]
\[105 = 50 \]
\[56 = 80 \]
\[21 = 140 \]
2. La situation suivante nous démontre les avoir de Josée et de Kim.

(0, 0), (0, 4), (12, 6), (8, 12)

i. Kim a au plus le double de l’avoir de Josée. Vrai

ii. Josée a au plus 4$ de plus que Kim. Vrai

iii. Josée et Kim ont moins de 18$ ensemble. Faux

3. Le directeur d’une compagnie veut acheter au moins 600 t-shirts ornés du logo de son entreprise. Il veut des t-shirts blancs et des t-shirts noirs. Il veut que le nombre de t-shirts blancs soit au plus égal au double du nombre de t-shirts noirs. Le directeur dispose d’un budget maximal de 4 000 $ pour l’achat des t-shirts. Un t-shirt blanc coûte 4 $ et un t-shirt noir coûte 5 $. Si x : le nombre de t-shirts blancs et y : le nombre de t-shirts noirs. Quelle lettre représente le polygone de contraintes de cette solution.

4. Le mobilier d’une bibliothèque municipale doit être changé pour contenir au moins 4400 livres de petit format et 2600 livres de grand format.

Un premier fournisseur propose des meubles de type A pouvant contenir 110 livres de petit format et 100 livres de grand format pour un prix de 400 $.

Un deuxième fournisseur propose des meubles de type B pouvant contenir 220 livres de petit format et 100 livres de grand format pour un prix de 600 $.

Par ailleurs le responsable de la bibliothèque a pour consigne de ne passer aucune commande supérieure à 9600 $ chez un même fournisseur. Déterminer le nombre de meubles à commander chez chacun des fournisseurs pour que la dépense soit minimale.

Solution:

Identification des variables :

x: Nombre de meubles du type A

y: Nombre de meubles du type B

Système d’inéquations traduisant les contraintes:

\[x \geq 0 \]

\[110x + 220y \geq 4400 \implies y \geq -\frac{1}{2}x + 20 \]

\[100x + 100y \geq 2600 \implies y \geq -x + 26 \]

\[y \geq 0 \]

\[400x \leq 9600 \implies x \leq 24 \]

\[600y \leq 9600 \implies y \leq 16 \]

GRAPHIQUE:

• Sommets du polygone :

 (12, 14), (24, 8), (24, 16), (10, 16)

• Formule de dépense minimale

 \[400x + 600y \]
Compléter le tableau :

<table>
<thead>
<tr>
<th>Sommets</th>
<th>Dépenses min. (expression) :</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12, 14)</td>
<td>400(12) + 600(14)</td>
<td>75600$</td>
</tr>
<tr>
<td>(24, 8)</td>
<td>400(24) + 600(8)</td>
<td>81600$</td>
</tr>
<tr>
<td>(24, 16)</td>
<td>400(24) + 600(16)</td>
<td>163200$</td>
</tr>
<tr>
<td>(10,16)</td>
<td>400(10) + 600(16)</td>
<td>73600$</td>
</tr>
</tbody>
</table>

Phrase :
Il faudrait acheter 10 meubles du type A et 16 meubles du type B.

5. On a besoin d’au moins 60 litres de peinture pour peindre les corridors d’un édifice. Pour effectuer ce travail, on utilise de la peinture blanche et de la peinture verte.
Selon le designer, on doit utiliser au plus 2 fois plus de peinture verte que de peinture blanche.
On évalue la surface à peindre à, au plus, 240 m².
Selon le fournisseur de peinture, un litre de peinture blanche couvre 2 m² et coûte 12$, tandis qu’un litre de peinture verte couvre 3 m² et coûte 10$.
Combien de litres de chaque couleur le contremaître doit-il utiliser pour minimiser ses dépenses ?

Solution
Identification des variables :

\[x: \text{Nombre de litres de peinture blanche} \quad y: \text{Nombre de litres de peinture verte} \]

Système d’inéquations traduisant les contraintes:

\[\begin{align*}
 x + y &\geq 60 \\
 y &\leq 2x \\
 2x + 3y &\leq 240 \\
 x &\geq 0 \\
 y &\geq 0
 \end{align*} \]

GRAPHIQUE :

- Sommets du polygone :
 (20, 40), (50, 60), (60, 0), (120, 0)
- Formule minimiser les dépenses :
 \[12x + 10y \]

Compléter le tableau :

<table>
<thead>
<tr>
<th>Sommets</th>
<th>Dépenses minimales (expression) :</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>(20, 40)</td>
<td>12(20) + 10(40)</td>
<td>640$</td>
</tr>
<tr>
<td>(50, 60)</td>
<td>12(50) + 10(60)</td>
<td>960$</td>
</tr>
<tr>
<td>(60, 0)</td>
<td>12(60) + 10(0)</td>
<td>720$</td>
</tr>
<tr>
<td>(120, 0)</td>
<td>12(120) + 10(0)</td>
<td>1440$</td>
</tr>
</tbody>
</table>

Phrase :
Il faudrait acheter 20 litres de peinture blanche et 40 litres de peinture verte.
6. Une entreprise fabrique deux produits qu’elle désire vendre aux États-Unis. Le produit A rapporte 4 $ par kg et le produit B rapporte 6 $ par kg. Ayant des moyens financiers limités, la société ne peut envoyer qu’un seul avion. Celui-ci ne peut transporter que 50 tonnes et a un volume de 2100 m3. Le produit A a un volume de 30 m3 par tonne ; le produit B a un volume de 70 m3 par tonne.

Combien de kg de chaque produit l’entreprise doit-elle mettre dans l’avion afin de maximiser ses gains, 1 tonne = 1000 kg?

Solution

Identification des variables :

\(x:\) Nombre de kg du produit A \(y:\) Nombre de kg du produit B

Système d’inéquations traduisant les contraintes:

\[
\begin{align*}
30x + 70y &\leq 2100 \\
x + y &\leq 50 \\
y &\leq -30x + 2100 \\
y &\leq -\frac{3}{7}x + 30 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]

GRAPHIQUE:

- Sommets du polygone :
 \((50, 0), (35, 15), (0, 30), (0, 0)\)
- Formule du gain maximal :
 \(4x + 6y\)

Compléter le tableau :

<table>
<thead>
<tr>
<th>Sommets</th>
<th>Gain maximal (expression)</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>((50, 0))</td>
<td>(4(50) + 6(0))</td>
<td>200</td>
</tr>
<tr>
<td>((35, 15))</td>
<td>(4(35) + 6(15))</td>
<td>230</td>
</tr>
<tr>
<td>((0, 30))</td>
<td>(4(0) + 6(30))</td>
<td>180</td>
</tr>
<tr>
<td>((0, 0))</td>
<td>(4(0) + 6(0))</td>
<td>0</td>
</tr>
</tbody>
</table>

Phrase : Il faudrait placer 35 000 kg du produit A et 15 000 kg du produit B.